GPLUS EDUCATION

Date	:	
Time	:	
Marks	:	

CHEMISTRY

HYDROGEN

Single Correct Answer Type

		Single correct	miswei Type			
1.	The percentage of para h	ydrogen in ordinary hydrog	gen increases when:			
	a) Temperature is lowere	ed				
	b) Temperature is increas	sed				
	-	and temperature is decreas	ed.			
	d) None of the above					
2.	Manufacture of H ₂ is made	le bv:				
	a) Lane's process	b) Bosch process	c) From natural gas	d) All of these		
3.	H_2O_2 on treatment with O_2	•	e) 11 em moures gas	w) e. e		
	a) H ₂	b) Oxygen	c) Hypochlorous acid	d) ClO ₂		
4.	Radioactive isotope of hy	, , ,	, , , ,	2		
	a) Tritium	b) Deuterium	c) <i>Para</i> hydrogen	d) <i>Ortho hydrogen</i>		
5.	K_a of H_2O_2 is of the order	of		, , , ,		
	a) 10^{-12}	b) ¹⁰⁻¹⁴	c) 10 ⁻¹⁶	d) 10^{-10}		
	•		C)	uj		
6.	The hardness of water is					
	a) EDTA method	b) Titrimetic method	c) Conductivity method	d) Distillation method		
7.	The $H - O - O$ bond angl					
	a) 107.28°	b) 97°	c) 104.5°	d) 109.28°		
8.		on to form H ⁺ ion. In this re				
	a) Transition metals	b) Alkali metals	c) Halogens	d) Noble gases		
9.	$TiH_{1.73}$ is an example of :					
	a) Ionic hydride	b) Covalent hydride	c) Metallic hydride	d) Polymeric hydride		
10.	The decomposition of H ₂	O ₂ can be slowed down by	the addition of small amou	int of phosphoric acid which		
	acts as:					
	a) Stopper	b) Detainer	c) Inhibitor	d) promoter		
11.	The ortho and para hydro	ogen possess:				
	a) Same physical propert	ies but different chemical p	properties			
	b) Different physical prop	perties but same chemical p	properties			
	c) Same chemical and phy	ysical properties				
	d) Different, physical and	chemical properties				
12.	The volume strength of 1	.5 N H ₂ O ₂ solution is				
	a) 4.8	b) 8.4	c) 4.2	d) 2.4		
13.	9	correct about heavy water?				
	a) Water at 4°C having m	aximum density is known a	is heavy water			
	b) It is heavier than wate	· - ·				
	c) It is formed by the com	nbination of heavier isotope	e of hydrogen and oxygen			
	d) None of the above					
14.	Which is not present in cl	ear hard water?				
	a) $Mg(HCO_3)_2$	b) CaCl ₂	c) MgSO ₄	d) MgCO ₃		
15.	Which of the following is	not correct regarding the e	lectrolytic preparation of H	H_2O_2 ?		
	a) Lead is used as cathod	e	b) 50% H ₂ SO ₄ is used			
	c) Hydrogen is liberated	at anode	d) Sulphuric acid undergo	oes oxidation		

16.	6. Electrolysis of X gives Y at anode. Vacuum distillation of Y gives H_2O_2 . The number of peroxy $(O-O)$				
	bonds present in X ar	nd Y respectively are			
	a) 1.1	b) 1.2	c) Zero, 1	d) Zero, zero	
17.	When H ₂ O ₂ is added	to acidic ferrous sulphate	solutions:		
	a) Electrons are gain	ed by Fe ²⁺			
	b) Electrons are lost	-			
	c) There is no loss or	•			
	d) Iron hydroxide pro	_			
18.		ng reactions produces hyd	rogen?		
	a) $H_2S_4O_8 + H_2O$	b) BaO + HCl	c) Mg + H ₂ O	d) $Na_2O_2 + 2HCl$	
19		hich of the following comp	, v -	a, 1.a.z a z 1 = 11 a 1	
	a) Na_2O_2	b) NaOH	c) Na ₂ O	d) KO ₂	
20		ng acts as both reducing ar	, <u>-</u>	a) 110 Z	
20.	a) H ₂ SO ₄	b) H_2O_2	c) KOH	d) KMnO ₄	
21			the heaviest isotope of hydr		
21.	a) 3	b) 5	c) 4	d) 6	
22	•	•	aromate and ether, ethereal l		
22.	a) Green	b) Red	c) Blue	d) Brown	
22	•	of FeCl ₃ is reduced by pa	•	uj brown	
23.			-	4) II	
24	a) ordinary H ₂	b) 0_2	c) nascent H	d) H ₂	
24.	Hydrogen does not co		-) Ati	J) C - J:	
25	a) Helium	b) Bismuth	c) Antimony	d) Sodium	
25.	H ₂ acts as an oxidant		-) N	T) C	
26	a) Br ₂	b) Ca	c) N ₂	d) S	
26.		I_2O and D_2O , NaCl dissolve		D.M II.O	
0.77	a) Equally in both	b) Only in H ₂ O	c) More in D ₂ O	d) More in H ₂ O	
27.		ı calcium carbide react wi		D. GD	
0.0	a) C_2D_2	b) CaD ₂	c) CaD ₂ O	d) CD ₂	
28.			i to dilute sulphuric acid, sar	ne gas, which burns explosively	
	in air, is evolved. The) (1)	DAI	
	a) 0 ₂	b) N ₂	c) Cl ₂	d) H ₂	
29.	Heavy water is repre		3 5 19 5	N. V. O. 100	
	a) H ₂ ¹⁸ 0	b) D ₂ O	c) D ₂ ¹⁸ O	d) H ₂ O at 4°C	
30.	Which is not a water				
	a) Calgon	b) Permutit	c) Na ₂ CO ₃	d) Na ₂ SO ₄	
31.	The boiling point of h	-			
	a) 100°C	b) 101.4°C	c) 104°C	d) 102.5°C	
32.		n liberated from 15mL of			
	a) 250mL	b) 300mL	c) 150mL	d) 200mL	
33.	Decomposition of H ₂				
	a) KOH	b) MnO ₂	c) Acetanilide	d) Oxalic acid	
34.	The boiling point of v	•			
	a) Water molecule is	linear			
	b) Water molecule is	not linear			
	c) Water molecules p	ossess covalent bond bet	ween H and O		
	d) Water molecules a	ssociate due to H-bonding	g		
35.	The volume of '10 vo	l.' of $\rm H_2O_2$ required to libe	erate 500 mL O ₂ at NTP is:		
	a) 50 mL	b) 25 mL	c) 100 mL	d) 125 mL	
36	Which of the following	g pairs of ions make the v	vater hard?		

				Gplus Education
	a) NH ₄ +,Cl ⁻	b) Ca ⁺ , HCO ₃	c) Ca ²⁺ , NO ₃	d) Na ⁺ , SO ₄ ²⁻
37.	Which of the following ga	s is insoluble in water?		
	a) SO ₂	b) NH ₃	c) H ₂	d) CO ₂
38.	Which will produce hard	water?		
	a) Saturation of water wi	th CaSO ₄		
	b) Addition of Na ₂ SO ₄ to	water		
	c) Saturation of water wi	th CaCO ₃		
	d) Saturation of water wi	th MgCO ₃		
39.	In Bosch's process which	gas is utilised for the prod	uction of hydrogen gas?	
	a) Producer gas	b) Water gas	c) Coal gas	d) None of these
40.	Triple point of water is			
	a) 203 K	b) 193 K	c) 273 K	d) 373 K
41.	The hybridization of the	orbitals of oxygen in H ₂ O ₂ i	S:	
	a) sp^3d	b) <i>sp</i>	c) sp^2	d) sp^3
42.	Which of the following pa	airs will not produce dihyd	rogen gas?	
	a) Cu + HCl (dil.)	b) Fe + H_2SO_4	c) Mg + steam	d) Na + alcohol
43.	Calgon used as water soft	ener is		
	a) $Na_2[Na_4(PO_3)_6]$	b) $Na_{4}[Na_{2}(PO_{3})_{6}]$	c) $Na_2[Na_4(PO_4)_5]$	d) None of these
44.	Permutit is:			
	a) Hydrated sodium alun	ninium silicate		
	b) Sodium hexa meta-pho	osphate		
	c) Sodium silicate			
	d) Sodium meta-alumina	te	>	
45.	The rubber foam is produ	iced by passing oxygen thr	ough rubber foaming mater	rial. This oxygen is released
	from:			
	a) Nitric oxide	b) Hydrogen peroxide	c) Water	d) CO ₂
46.	Which is the poorest redu	ucing agent?	CATTONI	
	a) Atomic hydrogen	JPLUS EDU	b) Nascent hydrogen	
	c) Dihydrogen		d) All have same reducing	g strength
47.	In context with the indus	trial preparation of hydrog	gen from water gas (CO + H	₂) which of the following is
	the correct statement.			
	a) CO and H ₂ are fraction	ally separated using differ	ences in their densities	
	b) CO is removed by abso	orption in aqueous Cu_2Cl_2 s	solution	
	c) H ₂ is removed through	occlusion with Pd		
	d) CO is oxidised to CO ₂ v	vith steam in the presence	of a catalyst followed by ab	sorption of CO ₂ in alkali
48.	The number of radioactiv	re isotopes of hydrogen is:		
	a) 1	b) 2	c) 3	d) None of these
49.	The oxidation number of	oxygen in hydrogen perox	ide is	
	a) + 1	b) - 1	c) + 2	d) - 2
50.	The normality of 30 volume	me H ₂ O ₂ is		
	a) 2.678 N	b) 5.336 N	c) 8.034 N	d) 6.685 N
51.	Acidified solution of chro	mic acid on treatment with	n H ₂ O ₂ yields:	
	a) $CrO_3 + H_2O + O_2$	b) $Cr_2O_2 + H_2O + O_2$	c) $CrO_5 + H_2O + K_2SO_4$	d) $H_2Cr_2O_7 + H_2O + O_2$
52.	The hair dyes available in	the market generally cont	ain two bottles, one contain	ning the dye and the other
	hydrogen peroxide. Befor	re applying the dye, the two	o solutions are mixed. The h	nydrogen peroxide.
	a) Is added to dilute the s	solution of the dye		
	b) Oxidises the dye to giv	e the desired colour		
	c) Reduces the dye to giv	e the desired colour		

d) Acidifies the solution of the dye

=0			Opius Luucution
53.	In periodic table tritium is placed in group:		**
	a) I b) II	c) III	d) IV
54.	The ortho and para hydrogen differ in respect of wh	-	
	a) In the molecular weight	b) In the nature of spin of	_
	c) In the nature of spin of electrons	d) In the number of proto	ns
55.	The bond energy of covalent 0—H bond in water is:		
	a) Equal to bond energy of hydrogen bond		
	b) Greater than bond energy of hydrogen bond		
	c) Lesser than bond energy of hydrogen bond		
	d) None of the above		
56.	Water acts as excellent solvent due to:		
	a) Hydrogen bonding		
	b) Neutral nature		
	c) High dielectric constant		
	d) None of the above		
57.	TiH _{1.73} is an example of which type of the hydride?		
	a) Metallic b) Ionic	c) Covalent	d) Polymeric
58.	An aqueous solution of hydrogen peroxide is		
	a) Alkaline b) Neutral	c) Strongly acidic	d) Weakly acidic
59.	The O—O bond length in H_2O_2 is:		
	a) 1.54 Å b) 1.48 Å	c) 1.34 Å	d) 1.01 Å
60.	Moist hydrogen peroxide cannot be dried over conc.	H ₂ SO ₄ because	
	a) It can catch fire	b) It is reduced by H ₂ SO ₄	
	c) It is oxidised by H ₂ SO ₄	d) It is decomposed by H ₂	SO_4
61.	The strength in volumes of a solution containing 30.3	B6g/L of H ₂ O ₂ is	
	a) 10 volume b) 20 volume	c) 5 volume	d) None of these
62.	Tritium emits:	ATION	
	a) α-particles b) β-particles	c) γ - rays	d) Neutrons
63.	The ratio of electron, proton and neutron in tritium i		
	a) 1 : 1 : 1 b) 1 : 1 : 2	c) 2 : 1 : 1	d) 1 : 2 : 1
64.	Hydrogen directly combines with		
	a) Cu b) Au	c) Ca	d) Ni
65.	In which of the following reactions, H ₂ O ₂ is acting as		
	a) $SO_2 + H_2O_2 \rightarrow H_2SO_4$	b) $2KI + H_2O_2 \rightarrow 2KOH +$	
	c) $PbS + 4H_2O_2 \rightarrow PbSO_4 + 4H_2O$	d) $AgO_2 + H_2O_2 \rightarrow 2Ag +$	$H_2O + O_2$
66.	Permutit is the technical name given to		
	a) Aluminates of calcium and sodium	b) Hydrated silicate of alu	
	c) Silicates of calcium and magnesium	d) Silicates of calcium and	sodium
67.	The best method to test whether a clear liquid is wat	er, is to:	
	a) Taste the liquid		
	b) Smell the liquid		
	c) Add litmus paper		
	d) Add few drops on anhydrous copper sulphate and		1 1
68.	An inorganic compound liberates O_2 when heated, to	irns an acid solution of KI b	rown and reduces acidified
	KMnO ₄ . The substance is:) 17010	D. D. (NO.)
	a) H ₂ O ₂ b) D ₂ O	c) KNO ₃	d) $Pb(NO_3)_2$
69.	Heavy water is qualified as heavy because it is:		
	a) A heavy liquid		
	b) An oxide of a heavier isotope of oxygen		

			Opius Luucuti
	c) An oxide of deuterium		
	d) Denser than water		
70.	Permanent hardness can be removed by adding		
	a) Cl ₂ b) Na ₂ CO ₃	c) Ca (OCl) Cl	d) K ₂ CO ₃
71.	The ionization energy of hydrogen is:		
	a) Lower than alkali metals		
	b) Lower than halogens		
	c) Closer to alkali metals		
	d) Closer to halogens		
72.	Which one of the following reactions represents the		2?
	a) $2KMnO_4 + 3H_2SO_4 + 5H_2O_2 \rightarrow K_2SO_4 + 2MnSO_2$		
	b) $2K_3[Fe(CN)_6] + 2KOH + H_2O_2 \rightarrow 2K_4[Fe(CN)_6]$	$+2H_2O+O_2$	
	c) $Pb_2 + H_2O_2 \rightarrow PbO + H_2O + O_2$		
	d) $2KI + H_2SO_4 + H_2O_2 \rightarrow K_2SO_4 + I_2 + 2H_2O$		
73.	Hydrogen peroxide is prepared in the laboratory by		
	a) Passing CO ₂ into BaO ₂	b) Adding MnO ₂ to dil. H ₂	
	c) Adding Na ₂ O ₂ to cold water	d) Adding PbO ₂ into KMr	10_4
74.	Heavy water is		
	a) Water at 0°C		
	b) Water containing Fe, Cr, Mn		
	c) D ₂ O		
	d) Water obtained after a number of distillations		
75.	Ortho and para hydrogen differ in) FI	D.D.
7.0	a) Nuclear charge b) Nuclear reaction	c) Electron spin	d) Proton spin
76.	Hydrogen peroxide is manufactured by the auto-oxi a) 2-ethylanthraquinol b) Anthraquinone		d) Anthrocono
77	What is the product of the reaction of H_2O_2 WITH C	c) Naphthalene	d) Anthracene
//.	a) O_2 + HOCl b) HCl + O_2	c) H ₂ O + HCl	d) HCL + H ₂
78	One mole of calcium phosphide on reaction with exc		uj neb i ng
70.	a) One mole of phosphene	cess water gives.	
	b) Two moles of phosphoric acid		
	c) Two moles of phosphine		
	d) One mole of phosphorus pentaoxide		
79.	Hydrogen may be prepared by heating a solution of	caustic soda with:	
	a) Mg b) Zn	c) Fe	d) Ag
80.	H_2O_2 is manufactured these days	-,)8
	a) By the action of H ₂ O ₂ on BaO ₂	b) By the action of H ₂ SO ₄	on Na ₂ O ₂
	c) By electrolysis of 50% H ₂ SO ₄	d) By burning hydrogen i	
81.	On bubbling CO ₂ through a solution of barium perox		78
	a) O ₂ is formed b) H ₂ CO ₃ is formed	c) H ₂ O ₂ is formed	d) H ₂ is formed
82.	The most reactive state of hydrogen is:	, 2 2	, 2
	a) Atomic hydrogen b) Heavy hydrogen	c) Molecular hydrogen	d) Nascent hydrogen
83.	The number of protons, electrons and neutrons resp		
	a) 10, 10, 10 b) 8, 10, 11	c) 10, 11, 10	d) 11, 10, 10
84.	Ordinary hydrogen is a mixture at:	•	•
	a) 75% ortho H ₂ + 25% para H ₂		
	b) 25% ortho H ₂ + 75% para H ₂		
	c) 50% ortho H ₂ + 50% para H ₂		
	d) 99% para H ₂ + 1%ortho H ₂		

85.	Heavy water freezes at:					
	a) -3.8° C	b) 3.8° C	c) 0° C	d) 3.2° C		
86.	36. The electronic configuration of deuterium is:					
	a) $1s^2$	b) $1s^1$, $2s^2$	c) $1s^2$, $2s^1$	d) 1s ¹		
87.	Smell of H ₂ O ₂ resembles:					
	a) Alcohol	b) Alkali	c) Nitric acid	d) Chloroform		
88.	Hydrogen produced in cor	ntact with substance which	is to be reduced is:			
	a) Ortho H ₂	b) Para H ₂	c) Active H	d) Nascent H		
89.	H ₂ O ₂ acts as an oxidizing a	agent in:				
	a) Neutral medium					
	b) Acidic medium					
	c) Alkaline medium					
	d) acidic as well as in alka	line medium				
90.	The concentration of H ₂ O ₂	solution of '10 volume' is				
	a) 30%	b) 3%	c) 1%	d) 10%		
91.	Water possesses a high die	electric constant, therefore				
	a) It always contains ions		b) It is universal solvent			
	c) Can dissolve covalent c	•	d) Can conduct electricity			
92.	Tailing of mercury is a lab	oratory test for:				
	a) 0 ₃	b) Hg	c) Cl ₂	d) O ₂		
93.	Which method cannot be u	ised to remove hardness o	f water?			
	a) Clark's method					
	b) By adding washing sod	a				
	c) Calgon process	CL				
	d) Filtration					
94.	Which of the following cou					
	a) Liq. H_2 + Liq. O_2	b) Liq. N_2 + Liq. O_2		d) Liq. O ₂ + Liq. Ar		
95.	When electric current is p		ride in the molten state,			
	a) Hydrogen is liberated a					
	b) Hydrogen is liberated a					
	c) Hydride ion migrates to					
0.0	d) No reaction takes place					
96.	Deuterium was discovered		-) D+lfl	1) Cl 1		
07	a) Urey	b) Aston	c) Rutherford	d) Chadwick		
97.	The percentage by weight		a) (2 ll	4) L 00		
00	a) 50	b) 25	c) 6.25	d) 5.88		
90.	Ortho and para-hydrogen a) Number of protons		a) Nature of chine of	d) Nature of oning of		
	a) Number of protons	b) Molecular weight	c) Nature of spins of	d) Nature of spins of electrons		
99	Decomposition of H_2O_2 is	rotarded by:	protons	elections		
JJ.	a) Acetanilide	b) Alcohol	c) H ₃ PO ₄	d) All of these		
100	Heavy water possesses:	b) Alcohol	C) 1131 O ₄	d) All of these		
100	a) Insoluble impurities lik	e silica				
		tes and bicarbonates of cal	cium and magnesium			
		ent physical properties tha	_			
		e the rate of nuclear reaction				
101	Which element forms max					
	a) 0	b) H	c) Si	d) C		
400	The bleaching properties of		<i>,</i> -	<i>)</i> -		

_	_ I _		_	_1		_			٠_	
G) <i>II</i> .	ıc	-	п	IJ	c	n	TI	n	n
$\mathbf{v}_{\mathbf{k}}$,,,		_	u	u	•	и	.,	v	

				Gpius Eaucatio
	, , ,	b) Oxidizing properties	c) Unstable nature	d) Acidic nature
103.	Which one of the following	g is called amphoteric solv	rent?	
	a) Ammonium hydroxide		b) Chloroform	
	c) Benzene		d) Water	
104.	The colour of hydrogen is			
	a) Yellow	b) Orange	c) Black	d) Colourless
105.	The amount of H ₂ O ₂ prese	ent in 1 L of 1.5 $N H_2 O_2$ so	lution is:	
	a) 2.5 g	b) 25.5 g	c) 3.0 g	d) 8.0 g
106.	H_2O_2 is prepared in the la	boratory when:		
	a) MnO ₂ is added to dilute	e cold H ₂ SO ₄		
	b) BaO ₂ is added to CO ₂ b	ubbling through cold wate	er	
	c) PbO ₂ is added to an aci	dified solution of KMnO ₄		
	d) Na ₂ O ₂ is added to boili	ng water		
107.	Decolourisation of acidifie	ed potassium permangana	te occurs when $\mathrm{H_2O_2}$ is add	ed to it. This is due to:
	a) Oxidation of KMnO ₄			
	b) Reduction of KMnO ₄			
	c) Both oxidation and red	uction of KMnO ₄		
	d) None of the above			
108.	Which hydride is neutral?			
	a) H ₂ S	b) H ₂ O	c) H ₂ Se	d) H ₂ Te
109.	Hydrogen burns with:	, <u>-</u>	- -	- -
	a) Smoky flame	b) Yellow flame	c) Blue flame	d) Pale yellow flame
110.	Zeolites are extensively us		>	
	· · · · · · · · · · · · · · · · · · ·		r c) Increasing the hardnes	sd) Mond's process
	catalyst	, , ,	of water	
111.	Deuterium, an isotope of h	nydrogen is:		
	a) Radioactive	b) Non-radioactive	c) Heaviest	d) Lightest
112.	Which is the lightest gas?		ATION	, 0
	a) Nitrogen	b) Hydrogen	c) Helium	d) Oxygen
113.	Temporary harness is cau			, , , ,
	a) CaSO ₄	b) CaCl ₂	c) CaCO ₃	d) $Ca(HCO_3)_2$
114.	H_2O_2 is:	. ,	.,	372
	a) Diamagnetic	b) Paramagnetic	c) Ferromagnetic	d) None of these
115.	Commercial 11.2 volume	, ,	_	,
	a) 1.0	b) 0.5	c) 11.2	d) 1.12
116.	The life period of atomic h		-,	,
	a) Only five minute	-y • • g • · · · • ·		
	b) Only one third of a seco	ond		
	c) Only two hour	· 		
	d) 10 second			
117	•	dume of hydrogen neroxid	le solution. Calculate its stre	ength
1171	a) 6.07%	b) 3.035%	c) 2.509%	d) 4.045%
118	-		with excess of sulphuric ac	,
110.	hydroxide, the ratio of vol	<u> </u>	=	id and excess of sociality
	a) 1 : 1	b) 1 : 2	c) 2 : 1	d) 9:4
110	Atomic hydrogen is obtair	•	C) 2 . I	uj 2 i T
117	a) Electrolysis of heavy w	-		
	b) Reaction of water with			
	c) Thermal decomposition	-		
	ej inermaruecomposition	ii oi watti		

				Gplus Education
		discharge through hydrog		
120.	Which loses weight on e	xposure to the atmosphere	??	
	a) Concentrated H ₂ SO ₄			
	b) Solid NaOH			
	c) A saturated solution of	of CO ₂		
	d) Anhydrous sodium ca	rbonate		
121.	Which can adsorb large	volumes of hydrogen gas?		
	a) Colloidal solution of p	alladium		
	b) Finely divided nickel			
	c) Colloidal ferric hydro			
	d) Finely divided platinu			
122.	In the hydrogen peroxid			
		are connected to one of th	e oxygen	
	b) All the four atoms are	<u>-</u>		
		ranged in a non-linear and		
		but molecule is non-polar		
123.	Fluorine reacts with wat			
	a) Fluorine water	b) Oxygen	c) Ozone	d) Oxygen, ozone
124.		ample containing 0.002 mo	ole of magnesium sulphate	dissolved in a litre of water
	is expressed as	13,000		D 400
405	a) 20ppm	b) 200ppm	c) 2000ppm	d) 120ppm
125.	Adsorbed hydrogen by p		2 11	
126	a) Nascent	b) Atomic	c) Heavy	d) Occluded
126.		e is added to acidified pota	assium dichromate, a blue	colour is produced due to
	formation of	h) C+ 0	-) CO	d) CrO ₄ ²⁻
127	a) CrO ₃	b) Cr ₂ O ₃	c) CrO ₅	a) cro ₄
14/.	Which is false about H ₂ (b) Two OH bonds lie in	the came plane
	a) Act as both oxidisingc) Pale blue liquid	and reducing agent	d) Can be oxidised by o	•
12Ω	_	$_{2}O_{2} \rightarrow S + 2H_{2}O$ manifests	_	zone
120.	a) Reducing action of H_2 3 + H_3		b) Oxidising nature of F	1 0
	c) Alkaline nature of H ₂	-	d) Acidic nature of H ₂ O	
129	,	used to determine hardnes	-	=
127	a) Oxalic acid	asea to determine naranes	s of water definited really is	<u>,</u>
	b) Sodium thiosulphate			
	c) Sodium citrate			
	d) Disodium salt of EDTA	Ą		
130.	Ordinary hydrogen has j			
	a) Hydrogen atoms	F		
	b) Deuterium atoms			
	c) Tritium atoms			
	d) The above three are in	n equal proportions		
131.	_	H_2O_2 in presence of FeSO ₄	to:	
	a) Phenol	b) Cyclohexane	c) Benzaldehyde	d) Benzoic acid
132.	•	s an example of interstitial		•
	a) NH ₃	b) CH ₄	c) ZnH ₂	d) H ₂ O
133.		netime it becomes free from	=	
	a) Permanent hardness			
	b) Temporary hardness			

	c) Suspended matter		
	d) Temporary hardness and dissolved gases		
134.	Polyphosphates are used as water softening agents be	cause they	
	a) Form soluble complexes with anionic species		
	b) Precipitate anionic species		
	c) Precipitate cationic species		
	d) Form soluble complexes with cationic species		
135.	When two ice cubes are pressed over each other they	unite to form one cube. W	hich of the following forces
	are responsible to hold them together?		O
	a) Ionic interaction		
	b) Van der Waals' forces		
	c) Covalent interaction		
	d) Hydrogen bond formation		
136.	The pH of a solution of H_2O_2 is 6.0. Some chloride gas	s is bubbled into this solut	ion. Which of the
100	following is correct?	o is bubbled life tills soldt.	tom winen of the
	a) The pH of resultant solution becomes 8.0		
	b) Hydrogen gas is liberated from resultant solution		
	c) The pH of resultant solution becomes less than 6.0 a	and ovygen gas is liberated	1
	d) Cl ₂ O is formed in the resultant solution	and oxygen gas is inderaced	
137	Permanent hardness of water can be removed by addi	ng Calgon (NaPO.) This	is an evample of
137			d) None of these
138	Hydrogen molecules are:	c) i recipitation	d) None of these
130.	a) Monoatomic and form X_2^{2-} ions	b	
	b) Diatomic and form X_2^{-1} ions		
	c) Diatomic and form X^- ions		
	d) Monoatomic and form X^- ions		
120			
139.	Hydrogen reacts with even in the dark.	ATION	4) CI
140	a) Br_2 b) F_2		d) Cl ₂
140.	1000 g aqueous solution of CaCO ₃ contains 10 g of calc		
1 1 1	,	= =	d) 10000 ppm
141.	Metal which does not react with cold water but evolve		J) E.
1 1 2			d) Fe
142.	The pair that yields the same gaseous product on reac		1) D 1 D . O
1 10	,	c) Na and Na ₂ O ₂	d) Ba and BaO ₂
143.	The heaviest among the following is:) m 1/1	15 77 1
		•	d) Hydrogen
144.	The molarity of a 100 mL solution containing 5.1 g of l		1) 50 0 14
		•	d) 50.0 <i>M</i>
145.	The metal that does not displace hydrogen from an ac		N. 6
	,		d) Ca
146.	Deionised water is obtained by passing hard water thi	O .	
		b) Zeolite	
	,	d) Both anion and cation e	xchanger
147.	The strength in volumes of a solution containing 30.36		
		c) 20 V	d) None of these
148.	Hydrogen was discovered by:		
			d) Priestley
149.	Hard water becomes free from ions when passed to	through ion exchange resi	n containing RCOOH
	groups.		

			Gplus Education
a) Cl ⁻	b) SO ₄ ²⁻	c) H ₃ O ⁺	d) Ca ²⁺
150. The sum of number of i		, ,	
a) 3	b) 4	c) 5	d) 6
151. Water contracts on hea		<i>c</i> , <i>c</i>	u, 0
a) To 100°C	b) From 0°C to 4°C	c) To 273 K	d) From 10°C to 20°C
152. Hydrogen combines di		ej 102/8 K	a, 110 m 10 a to 20 a
a) Ca	b) Cu	c) Zn	d) Fe
153. H_2O_2 restores the color		,	
a) Converting PbO ₂ to	• •		-2- 8,-,-
b) Oxidising PbS to PbS			
c) Converting PbCO ₃ to			
d) Oxidising PbSO ₃ to 1			
154. 10 volumes of H_2O_2 ha		elv:	
a) 3%	b) 30%	c) 10%	d) 5%
155. Ammonium persulphat	,	•	•
a) H ₂ O ₂	b) 0 ₂	c) H ₂	d) $(NH_4)_2SO_4$
156. Which statement about	, <u>-</u>	, 2	7 172 1
a) They are used as cat			
•	cture which enables them t	o take up small molecul	es
	silicates having three dime	-	
	nits are replaced by AlO_4^{5-} a		s
157. Which of the following			
a) Fe	b) Cu	c) Al	d) Mg
158. The reaction of water v	vith sodium and potassium	is	, ,
a) Endothermic		b) Reversible	
c) Exothermic		d) Irreversible and e	ndothermic
159. High boiling point of w	ater is due to:	CATION	
a) Its high specific heat	CIPLUS EDU	CAHON	
b) Hydrogen bonding			
c) High dielectric const	tant		
d) Low dissociation cor	nstant		
160. Ozone reacts with H ₂ O ₂	₂ to give oxygen. One volum	ne of ozone gives:	
a) One volume of oxyge	en		
b) Half volume of oxyge	en		
c) 1.5 volume of oxyger	n		
d) Two volumes of oxy	gen		
161. Which of the following	statements do not define th	ne characteristic propert	y of water "water is a universal
solvent".?			
a) It has high liquid ran			
b) It has very low diele	ctric constant		
c) It can dissolve maxir	num number of compound:	S	
d) None of the above			
162. Sodium zeolite is:			
a) NaAlSi ₂ O ₆	b) Na ₂ Al ₂ Si ₂ O ₃	c) Na ₂ Al ₂ Si ₂ O ₈	d) NaAl ₂ Si ₂ O ₈
163. Acidified KMnO ₄ is dec			
a) Oxygen	b) Hydrogen	c) Nitric oxide	d) Nascent hydrogen
164. The oxidizing property	of $\rm H_2O_2$ is best explained b	y assuming that two oxy	gen atoms in its molecule are:

a) Bonded differentlyb) Bonded similarly

	c) Bonded covalently		•
	d) Bonded by hydrogen bonds		
165	H_2O_2 is stored in:		
	a) Iron container after addition of stabilizer		
	b) Glass container after addition of stabilizer		
	c) Plastic container after addition of stabilizer		
	d) None of the above		
166	Hydrogen is not used for:		
	a) Manufacture of vegetable ghee		
	b) Production of high temperature		
	c) As rocket fuel with kerosene		
	d) As a reducing agent		
167	H_2O_2 is concentrated by:		
	a) Steam distillation		
	b) Fractional distillation		
	c) Freezing in freezing mixture		
	d) Distillation under reduced pressure		
168	Pure H ₂ is obtained by the action of:		
	a) Al over KOH		
	b) NaH over H ₂ O		
	c) Electrolysis of warm solution of Ba(OH)2 using N	i electrodes	
4.60	d) All of the above		
169	Heavy water is manufactured in India at:) ni i i	1) NI C.1
170	a) Delhi b) Trombay	c) Bhilai	d) None of these
170	What is formed when calcium carbide reacts with he	·	1) CD
171	a) C ₂ D ₂ b) CaD ₂	c) Ca ₂ D ₂ O	d) CD ₂
1/1	The ionization of hydrogen atom gives:	c) Proton	d) Herdmound ion
172	a) Hydronium ion Which is not true in case of H. O. ?	c) Proton	d) Hydroxyl ion
1/2	Which is not true in case of H ₂ O ₂ ? a) It is more stable in basic solution		
	b) It acts as strong oxidizing agent in acid and basic s	colutions	
	c) It is decomposed by MnO ₂	Solutions	
	d) It behaves as reducing agent towards KMnO ₄		
172	Which one of the following is a true peroxide?		
173	a) SO ₂ b) MnO ₂	c) NO ₂	d) BaO ₂
174	What is the volume of "20 volume H_2O_2 " required to	-	-
1/1		c) 100cm^3	d) ¹²⁵ cm ³
	a) ^{250 cm³} b) ^{20 cm³}	c) 100 cm	d) 123 cm
175	. The melting points of most of the solid substances in	crease with an increase of I	pressure. However, ice
	melts at a temperature lower than its usual melting	point when the pressure is	increased. This is because:
	a) Ice is less denser than water		
	b) Pressure generates heat		
	c) The chemical bonds break under pressure		
	d) Ice is not a true solid		
176	Heavy water was discovered by:		
	a) Nernst b) Haber	c) Urey and Washburn	d) Aston
177	The maximum possible number of hydrogen bonds a	a water molecule can form i	S:
	a) 1 b) 2	c) 3	d) 4
178	H_2O_2 acts as antiseptic due to its:		

a) Reducing property b) Oxidizing property c) Bleaching property d) Acidic property 179. Hydrogen gas will not reduce: a) Heated cupric oxide b) Heated ferric oxide c) Heated stannic oxide d) Heated aluminium oxide 180. Which pair does not show hydrogen isotopes? a) Ortho and para hydrogen c) Deuterium and tritium c) Deuterium and tritium c) Bleaching property d) Acidic property d) Acidic property	•
a) Heated cupric oxide b) Heated ferric oxide c) Heated stannic oxide d) Heated aluminium oxide 180. Which pair does not show hydrogen isotopes? a) Ortho and para hydrogen b) Protium and deuterium	•
b) Heated ferric oxide c) Heated stannic oxide d) Heated aluminium oxide 180. Which pair does not show hydrogen isotopes? a) Ortho and para hydrogen b) Protium and deuterium	•
c) Heated stannic oxide d) Heated aluminium oxide 180. Which pair does not show hydrogen isotopes? a) Ortho and para hydrogen b) Protium and deuterium	•
d) Heated aluminium oxide 180. Which pair does not show hydrogen isotopes? a) Ortho and para hydrogen b) Protium and deuterium	•
180. Which pair does not show hydrogen isotopes? a) Ortho and para hydrogen b) Protium and deuterium	4
a) <i>Ortho</i> and <i>para</i> hydrogen b) Protium and deuterium	•
	•
c) Deuterium and tritium d) Tritium and protium	
-, and vivam	•
181. The hardness of water is due to Metal ions.	
a) Ca^{2+} and Na^{+} b) Mg^{2+} and K^{+} c) Ca^{2+} and Mg^{2+} d) Zn^{2+} and Ba^{2+}	r
182. Under what conditions of temperature and pressure, the formation of atomic hydrogen from molecular	
hydrogen will be favoured more?	
a) High temperature and low pressure	
b) Low temperature and low pressure	
c) High temperature and high pressure	
d) Low temperature and high pressure	
183. Heavy hydrogen is used:	
a) In filling the balloons	
b) In studying reaction mechanism	
c) In calculating heat of formation	
d) Iron hydroxide precipitates	
184. The reaction, $H_2S + H_2O_2 \rightarrow S + 2H_2O$ manifests:	
a) Acidic nature of $\mathrm{H_2O_2}$	
b) Alkaline nature of H_2O_2	
c) Oxidizing nature of H_2O_2	
d) Reducing nature of H ₂ O ₂	
185. Decomposition of H_2O_2 is accompanied by:	
a) Decrease in free energy	
b) Increase in free energy	
c) No change in free energy	
d) Evolution of heat	
186. Which of the following statements is correct? Dielectric constant of ${\rm H_2O_2}$	
a) Increases with dilution b) Decreases with dilution	
c) Is unaffected on dilution d) None of the above	
187. Heavy water is not used for dinking because:	
a) It is poisonous	
b) It is costly	
c) Its physiological action is different from ordinary water	
d) Its chemical properties are different from ordinary water	
188. Maximum density of heavy water is at:	
a) 0° C b) 4° C c) 11.6° C d) 3.8° C	
189. The catalyst used in Bosch process of manufacture of H_2 is:	
a) Finely divided Ni b) V_2O_5 c) Pd d) $Fe_2O_3 + Cr_2O_3$	
190. In which of the following reactions, H_2O_2 behaves as a reducing agent?	
a) $Na_2SO_3(aq) + H_2O_2(aq) \rightarrow Na_2SO_4(aq) + H_2O(l)$	
b) $PbO_2(s) + H_2O_2(aq) \rightarrow PbO(s) + H_2O(l) + O_2(g)$	
c) $2KI(aq) + H_2O_2(aq) \rightarrow 2KOH(aq) + I_2(s)$	
d) $KNO_2(aq) + H_2O_2(aq) \rightarrow KNO_3(aq) + H_2O(l)$	

191. Among CaH ₂ , NH ₃ , NaH and B ₂ H ₆ , which are covalent hydride?				
a) NH ₃ and B ₂ H ₆	b) NaH and CaH ₂	c) NaH and NH ₃	d) CaH ₂ and B ₂ H ₆	
192. In which reaction hydroge	en is not formed?			
a) Copper and hydrochlor	ric acid			
b) Iron and sulphuric acid				
c) Magnesium and steam				
d) Sodium and alcohol				
193. The adsorption of hydrog	en by metals is called			
a) Adsorption	b) Occlusion	c) Hydrogenation	d) Dehydrogenation	
194. A molten ionic hydride on	•	ej njarogenacion	a) benyar ogenation	
a) H ⁺ ion moving towards				
b) H ⁺ ion moving towards				
c) H ₂ is liberated at anode				
d) H ₂ is liberated at catho				
195. Moist hydrogen cannot be		I SO hocauso		
a) It can catch fire	e urieu over concentrateu i	12304 because.		
-				
b) It is reduced by H ₂ SO ₄				
c) It is oxidized by H ₂ SO ₄				
d) It decomposes H ₂ SO ₄	. 1	1 1 11		
196. Both temporary and perm			13.0	
a) Ca(OH) ₂	b) Na ₂ CO ₃	c) CaCO ₃	d) CaO	
197. The weight percentage of				
a) 22		c) 4	d) 20	
198. Very pure hydrogen (99.9	The same of the sa			
a) Mixing natural hydrocarbons of high molecular weight				
b) Electrolysis of water				
c) Reaction of salt like hy	drides with water	LACITAL		
d) Reaction of methane w	ith steam	AHUN .		
199. Density of water is maxim	ıum at:			
a) 0°C	b) 100° C	c) 4°C	d) 0 K	
200. The most reactive isotope	e of H is:			
a) ₁ H ¹				
b) ₁ H ²				
c) ₁ H ³				
d) All the same reactivity				
201. Heavy water is used in ato	omic reactor as			
a) Moderator		b) Coolant		
c) Both moderator and co	oolant	d) Neither coolant nor mo	oderator	
-				
202. The exhausted Permutit is generally regenerated by percolating through it a solution of: a) Sodium chloride b) Calcium chloride c) Magnesium chloride d) Potassium chloride				
203. The best explanations for not placing hydrogen with the group of alkali metals or halogens is:				
a) Hydrogen can form compounds with all other elements				
b) Hydrogen is much lighter element than the alkali metals or the halogens				
c) The ionization energy of hydrogen is too high for group of alkali metals but too low for halogen group				
d) None of the above				
204. Hydrogen molecule differs from chlorine molecule in the following respect.				
a) Hydrogen molecule is non-polar but chlorine molecule is polar				
b) Hydrogen molecule is polar while chlorine molecule is non-polar				
		ogen bonds but chlorine m	olecule does not	
e, myanogen molecule cal	a abana mitoriti mbitolikar myur	oben bonds but chioling in	orecare ades not	

d) Hydrogen molecul	a cannot participate in coord	dinate hand formation but	chlorine molecule can		
d) Hydrogen molecule cannot participate in coordinate bond formation but chlorine molecule can 205. The geometry of water molecule is same as that of:					
a) CO_2	b) C ₂ H ₄	c) Chlorine oxide	d) Boron trifluoride		
206. Hydrogen peroxide d		ej dinorme omae	a) Boron amaoriae		
	a) Liberate iodine from KI				
b) Turn the titanium					
•	le with moist silver oxide				
	of aniline, KClO ₃ and dil. H ₂ Se	O₄ violet			
	method of preparing hydrog		of dil. HCl and:		
a) Zn	b) Fe	c) K	d) Al		
208. When zeolite which i	s hydrated sodium aluminiu	m silicate is treated with h	ard water, the sodium ions are		
exchanged with					
a) H ⁺ ions	b) Mg ²⁺ ion	c) Ca ²⁺ ion	d) both Ca^{2+} and Mg^{2+}		
209. Hydrolysis of one mo	le of peroxodisulphuric acid	produces:			
a) Two moles of sulp					
	oxomonosulphuric acid				
= -	uric acid and one mole of pe	-			
	-	_	ne mole of hydrogen peroxide		
	n of oil the catalyst common				
a) Pd on CuCl ₂	b) Ni	c) Fe	d) V_2O_5		
	n react to form water. This d				
a) Priestley	b) Cavendish	c) Scheele	d) Newton		
	owing processes will produc		l M. 60		
a) Saturation of water	The state of the s	b) Saturation of water			
c) Saturation of water		d) Addition of Na ₂ SO ₄	to water		
	H_2O_2 used for oxidation is both		d) None of these		
a) Electrovalent bond	d b) Co-ordinate bond is oxidizing nature of H_2O_2 ?	c) Covalent bond	d) None of these		
a) $H_2O_2 + 2KI \rightarrow 2K$	70 17 17 17 17 18 18 79	CHITOIL			
b) $Cl_2 + H_2O_2 \rightarrow 2H$					
c) $H_2O_2 + Ag_2O \rightarrow 2$	-				
d) NaClO + $H_2O_2 \rightarrow 2$					
215. H_2O_2 is manufacture					
	gen in excess of oxygen				
	b) By the action of H ₂ O ₂ on BaO ₂				
c) By the action of H ₂					
	d) By electrolysis of 50% H ₂ SO ₄				
	en from a solution of H_2O_2 (t	he action being catalytic) o	only if the solution is:		
a) Basic	b) Acidic	c) Neutral	d) None of these		
217. Ionic hydrides react	with water to give				
a) Hydride ions	b) Acidic solutions	c) Protons	d) Basic solutions		
218. Hydrogen is evolved	by the action of cold dilute H	INO ₃ on:			
a) Fe	b) Mg or Mn	c) Cu	d) Al		
219. Hydrogen peroxide f	or the first time was prepare	d by:			
a) Priestley	b) Thenard	c) Gay-Lussac	d) Bernard		
220. Which pair does not					
a) <i>Ortho</i> hydrogen a		b) Protium and deuter			
c) Deuterium and tri		d) Tritium and protiu	n		
221. The strength of 10 vo	olume of H ₂ O ₂ solution is				

a) 10

b) 68

- c) 60.70
- d) 30.36
- 222. The conversion of atomic hydrogen into ordinary hydrogen is:
 - a) Exothermic change
 - b) Endothermic change
 - c) Nuclear change
 - d) Photochemical change
- 223. Para hydrogen is:
 - a) Less stable than ortho hydrogen
 - b) More stable than ortho hydrogen
 - c) As stable as ortho hydrogen
 - d) None of the above
- 224. Some statements about heavy water are given below:
 - (i) Heavy water is used as a moderator in nuclear reactors
 - (ii) Heavy water is more associated than ordinary water
 - (iii) Heavy water is more effective solvent than ordinary water

Which of the above statements are correct?

- a) (i) and (ii)
- b) (i), (ii) and (iii)
- c) (ii) and (iii)
- d) (i) and (iii)

- 225. H_2O_2 acts as a reducing agent in its:
 - a) Reaction with a ferrous salt
 - b) Reaction with iodides
 - c) Reaction with lead sulphide
 - d) Reaction with KMnO₄ in acidic medium
- 226. When hydrolith is treated with water it yields:
 - a) H_2

b) H₂O₂

c) N_2

- d) NaH
- 227. Atomic hydrogen produces formaldehyde when it reacts with:
 - a) CO_2

b) CO

c) 0_2

d) C_2H_2

- 228. K_a for H_2O_2 is of the order of:
 - a) 10^{-12}
- b) 10^{-14}
- c) 10^{-16}
- d) 10^{-10}
- 229. Which one of the following reaction does not form gaseous product?
 - a) $PbO_2 + H_2O_2 \rightarrow$
 - c) PbS + $H_2O_2 \rightarrow$

- b) Acidified $KMnO_4 + H_2O_2 \rightarrow$
- d) $Cl_2 + H_2O_2 \rightarrow$

230. The structure of H_2O_2 is:

c) H—0—0—H

- 231. Which cannot be oxidised by H_2O_2 ?
 - a) Na₂SO₃
- b) PbS

c) KI

- d) 0_3
- 232. A mixture of hydrazine and 40 to 60 per cent of H_2O_2 solution is:
 - a) Antiseptic
- b) Rocket fuel
- c) Germicide
- d) Insecticide
- 233. Hydrogen peroxide is now generally prepared on industrial scale by the:
 - a) Action of H₂SO₄ on barium peroxide
 - b) Action of H₂SO₄ on sodium peroxide
 - c) Electrolysis of 50% H₂SO₄
 - d) Burning hydrogen in excess of oxygen
- 234. The equilibrium molecular structure of hydrogen peroxide is
 - a) Planar as given below

b) Linear

Н			
c) Tetrahedral		d) Non-planar	
235. A given solution of H_2O_2	is 30 volume. Its concentrat	tion in terms of molarity is:	
a) 9.1 <i>M</i>	b) 2.68 <i>M</i>	c) 2.5 <i>M</i>	d) 26.8 <i>M</i>
236. H_2O_2 turns an acidified s	olution of to orange red	d.	
a) BaO ₂	b) PbO ₂	c) Na_2O_2	d) TiO ₂
237. Tritium is obtained by:			
a) Nuclear reactions			
b) Passing steam over he	ated C		
c) Action of NaOH on Al			
d) Action of H ₂ SO ₄ on Zn			
238. In the case of H_2O_2 , the a	ngle between the planes co	ntaining the hydrogen atom	ı is:
a) 100°	b) 90°	c) 109° 28′	d) 180°
239. In laboratory, H_2O_2 is pro-	epared by		
a) Cold $H_2SO_4 + BaO_2$			
b) HCl + BaO ₂			
c) conc $H_2SO_4 + Na_2O_2$			
d) $H_2 + O_2$			
240. The formula of heavy wa	ter is:		
a) H ₂ O ¹⁸	b) D ₂ O	c) T ₂ 0	d) H ₂ O ¹⁷
241. Hydrogen resembles in n	nany of its properties with:		
a) Alkali metals	b) Halogens	c) Both (a) and (b)	d) None of these
242. Hydrogen is not obtained	l when zinc reacts with		
a) Cold water	b) hot NaOH solution	c) dil. H ₂ SO ₄	d) dil. HCl
243. The H-O-H angle in water	molecule is about	AHON .	
a) 105°	b) 102°	c) 180°	d) 90°
244. Hydrogen adsorbed on p	alladium is known as:		
a) Atomic H	b) Nascent H	c) Occluded H	d) Heavy H
245. Hydrogen molecule differ	rs from chlorine molecule in	n the following respect	
a) Hydrogen molecule is	non-polar but chlorine mol	ecule is polar	
b) Hydrogen molecule is	polar while chlorine molect	ule is non-polar	
c) Hydrogen molecule ca	n form intermolecular hydr	ogen bonds but chlorine m	olecule does not
d) Hydrogen molecule ca	nnot participate in coordina	ation bond formation but cl	nlorine molecule can
246. Decomposition of H_2O_2 is	s accelerated by:		
a) Traces of acids	b) Finely divided metals	c) Acetanilide	d) Alcohol
247. Which one of the following	ng is used for reviving the e	xhausted 'permutit'?	
a) HCl solution	b) 10% CaCl ₂ solution	c) 10% MgCl ₂ solution	d) 10% NaCl solution
248. The volume strength of 1	$.5 \text{ N H}_2\text{O}_2$ solution is		
a) 16.8 L	b) 8.4 L	c) 4.2 L	d) 5.2 L
249. Nascent hydrogen consis			
a) Hydrogen atoms with	••		
b) Hydrogen molecules v	vith excess energy		

250. At absolute zero:

d) Solvated protons

a) Only para hydrogen exists

c) Hydrogen ions in excited state

			-
b) Only ortho hydro	•		
	rtho hydrogen exist		
d) None of the abov			
251. Hydrogen peroxide	works as:		
a) An oxidant only			
b) A reductant only	r		
c) An acid only	1 1 .1		
d) An oxidant, a rec			
	ving will not give H_2O_2 on hy	·	d) IINO (normitrio coid)
a) HClO ₄	b) $H_2S_2O_8$	c) H_2SO_5	d) HNO ₄ (pernitric acid)
253. The n/p ratio for ₁		.) 2	1) 7
a) 1	b) 2	c) 3	d) Zero
	weight of hydrogen in H ₂ O ₂		4) [0
a) 5.88	b) 6.25	c) 25	d) 50
_	t does not containion.	A13+	C:4+
a) Na ⁺	b) ^{Mg2+}	c) Al ³⁺	d) ^{Si⁴⁺}
256. The molarity of pur	re water at 4° C is:		
a) 1 <i>M</i>	b) 2.5 <i>M</i>	c) 5 <i>M</i>	d) 55.5 <i>M</i>
_	-	esence of nickel as a catalyst i	
a) Methane	b) Ethane	c) ozone	d) Hydrogen
258. The volume of oxyg	gen liberated from 0.68 g of		, , ,
a) 112mL	b) 224mL	c) 56mL	d) 336mL
259. Which hydride is an		1	
a) NH ₃	b) H ₂ S	c) TiH _{1.73}	d) NaH
260. H ₂ O ₂ reduces K ₃ Fe	$(CN)_6$ in:	3 11/0	
a) Neutral solution		c) Alkaline solution	d) Non-polar medium
261. Point out the incorr	rect statement	LICATION	
a) Hardness of wat	er depends upon its soap co	onsuming power	
b) Temporary hard	ness is due to bicarbonates	of calcium and magnesium	
c) Permanent hard	ness is due to soluble sulph	ates, chlorides and nitrates of	Ca and Mg
d) Permanent hard	ness can be removed by boi	ling water	
262. H ₂ O ₂ converts pota	assium ferrocyanide to ferri	cyanide. The change observe	d in the oxidation state of iron
is:			
a) $Fe^{2+} \rightarrow Fe^{3+}$	b) Fe \rightarrow Fe ²⁺	c) $Fe^{3+} \rightarrow Fe^{2+}$	d) $Fe^{2+} \rightarrow Fe^{+}$
263. Which of the follow	ring is correct about heavy v	water?	
a) Water at 4°C hav	ring maximum density is kn	own as heavy water	
b) It is formed by th	ne combination of heavier is	sotope of hydrogen and oxyge	n
c) It is heavier than	ı water		
d) None of the abov	<i>r</i> e		
264. Hydrogen is prepar	ed on large scale for indust	rial use	
a) by $Zn + H_2SO_4$	b) by Al + NaOH	c) by Na + C ₂ H ₅ OH	d) From water gas
265. Hydrogen is obtain	ed by the action of an alloy	of silicon and iron with NaOH	. The process is called:
a) Wood process	b) Bosch process	c) Haber process	d) Silicol process
266. In transforming 0.0	1 mole of PbS to PbSO ₄ , the	volume of 10 volume H_2O_2 r	equired will be
a) 11.2mL	b) 22.4mL	c) 33.6mL	d) 44.8mL
267. Hydrogen peroxide	when added to a solution o	of potassium permanganate ac	cidified with sulphuric acid
a) Forms water onl	y		
b) Acts as an oxidis	ing agent		

		Opius Luucutioi
c) Acts as a reducing agent		
d) Reduces sulphuric acid		
Water is oxidised to oxygen by		
a) ClO ₂ b) KMnO ₄	c) H ₂ O ₂	d) Fluorine
The most abundant element in the universe is though		
a) Carbon b) Oxygen	c) Hydrogen	d) Nitrogen
In the preparation of hydrogenated oil the chemical		
a) Hydrogenation b) Reduction	c) Dehydrogenation	d) Oxidation
The most abundant isotope of hydrogen is:	_	
a) Tritium b) Deuterium	c) Protium	d) Para-hydrogen
Which statement is not correct for hydrogen peroxid	le?	
a) Pure H ₂ O ₂ is fairly stable		
b) It sometimes acts as a reducing agent		
c) It acts as an oxidizing agent		
d) Aqueous solution of H ₂ O ₂ is weakly basic		
Which one is correct for perhydrol?		
a) It is $30\% H_2O_2$ or $100 \text{ vol.} H_2O_2$		
b) Its molarity is 8.8 <i>M</i>		
c) It is used as antiseptic and germicide		
d) All of the above		
Hydrogen has a tendency to gain one electron in ord		
a) Alkali metals b) Noble gases	c) Halogens	d) Alkaline earth metals
Calgon is an industrial name given to:		
a) Normal sodium phosphate		
b) Sodium meta-aluminate		
c) Sodium hexa meta-phosphate		
d) Hydrated sodium aluminium silicate	'ATION!	
For the bleaching of hair, the substance used is:	WITOIL	D 0
a) SO ₂ b) Bleaching powder	c) H_2O_2	d) O ₃
In solid hydrogen, the intermolecular bonding is:) M . III	D.C. 1 .
a) Ionic b) Van der Waals'	c) Metallic	d) Covalent
The species that does not contains peroxide ions is:) C O	l) D. O.
a) PbO_2 b) H_2O_2	c) SrO ₂	d) BaO ₂
The critical temperature of water is higher than that	of O_2 because H_2O molecu	ie nas:
a) Fewer electrons than oxygen		
b) Two covalent bonds		
c) V-shape		
d) Dipole moment		
Pure H ₂ O ₂ is:		
a) Colourless liquid		
b) A gas		
c) Blue syrupy liquid d) Pale blue syrupy liquid		
when silicon is boiled with caustic soda solution, the	age ovolvod ici	
	_	d) None of these
a) $ m O_2$ b) SiH $_4$ In which of the following reactions hydrogen peroxic	c) H ₂	a) None of these
in which of the following reactions hydrogen peroxical $H_2SO_3 + H_2O_2 \rightarrow H_2SO_4 + H_2O$	ac is a reducing agent:	
b) $2HI + H_2O_2 \rightarrow H_2O + I_2$		
c) $2\text{FeCl}_1 + \text{H}_2\text{O}_2 \rightarrow 2\text{H}_2\text{O} + \text{H}_2\text{O}_2 \rightarrow 2\text{FeCl}_3 + 2\text{H}_2\text{O}$		
c) 21 ediz + 21101 + 11202 - 21 ediz + 21120		

d) $Cl_2 + H_2O_2 \rightarrow 2HCl + O_2$

283. Which does not react with cold water?

a) Mg_3N_2

b) CaC₂

c) COCl₂

d) SiC

284. Deuterium resembles hydrogen in chemical properties but reacts:

- a) Slower the hydrogen
- b) Faster than hydrogen
- c) More vigorously than hydrogen
- d) Just as hydrogen

